

Ryan Bay, Gerald Przybylski, Thorsten Stezelberger

Motivation

The impact that shearing within the South Pole ice sheet may have on detector geometry and longevity has been an outstanding issue for IceCube. The collaboration has explored the use of muons and embedded light sources for tracking detector deformation, but these techniques typically have the disadvantages of poor resolution and potential biases.

At the same time, there is large uncertainty and much concern in both the scientific community and general public about the stability of ice sheets in the middle to long term. Poorly understood are the manner and degree to which the strain rate of large glaciers depends upon temperature and the presence of impurities. IceCube will encompass a cubic-kilometer of natural glacial ice, serving as a platform and also an integral element of

the telescope, with large variations in both impurity content and temperature.

Figure 1 shows the results of tracking AMANDA strings 11, 12 and 13 over a 9 year baseline using flasher data. The bottom portions of these strings appear to have moved 5 meters during this time in a cross-flow direction, which is a surprising result. The ice in the depth range 2000-2450 m will hold over 40% of our sensors, and a gradual deformation of the initially calibrated array geometry could negatively impact event reconstruction capabilities.

Figure 2 shows a temperature profile of South Pole ice based on in situ thermistor readings from both AMANDA and IceCube. The extrapolation to bedrock is so poorly constrained that we do not know whether the ice sheet is melting at the bed or frozen.

Fig. 2. Temperature fit and extrapolation to bedrock with AMANDA/IceCube thermistors.

Fig. 3. Possible influence of dust on the shear strength of glacial ice.

Figure 3 shows two possible shear curve models in which the ice is stuck to the bedrock. The simple model uses the temperature information from Figure 2 and makes

assumptions about the way in which the strain rate increases with temperature. The second curve incorporates qualitative knowledge gained from other sites where it was found that shear concentrated in the dust bands, probably because of finer grains and faster fabric development.

Fig. 4 shows tilting of IceCube strings, measured by consecutive readings from three precision electrolytic inclinometers over more than one year. The change in shear with depth implied by the readings is difficult to reconcile with simple models of the strain rate of ice. In the figure, coordinates are local to each device and no absolute orientation is possible. By combining an inclinometer with a DOM, the direction of tilting can be reconstructed using flasher information. What little information we have obtained suggests that *different parts of the ice behave differently*. This means we are better off having measurements at lots of different points in space, rather than precise measurements at only a few points.

Miniature Inclination/Acceleration Sensor

The ADIS16209 Analog Devices is a low-power dual-axis digital inclinometer and accelerometer. The ADIS16209 provides 0.025° angular resolution and 2.44×10^{-4} g acceleration resolution in a microelectromechanical integrated circuit.

The MEMS chip has been integrated with a small custom PCB board to be mounted as a mezzanine card on top of the DOM main board. The inclinometer circuit will attach to the unused FPGA connector JP14 (Fig. 6). The FPGA will emulate an SPI interface in the DOM firmware for communication with the sensor. Housekeeping code will periodically read out the inclinometers during normal data runs.

Fig. 6. (*Left*) Location for the inclinometer mezzanine board (*right*).

Impact

The inclinometer modules will be introduced into DOM production and logistic pipelines randomly to minimize impact. A record will be made of which DOMs have inclinometers installed, perhaps as part of the naming convention.

The design of the iDOM is such that:

- The inclinometer results in low (<1%) additional DOM power consumption.
- The circuitry and interface allow the inclinometer to be shut off.

• The inclinometer does not share any resource that could make the DOM inoperable or adversely affect physics data should the inclinometer fail (an unlikely occurrence).

• Readout of the inclinometer will have minimal impact on IceCube data acquisition operations or maintenance, since inclination data can be extracted with only a few seconds per year of CPU time. Data taking from the monitor stream is a fast and easily programmed operation for which examples already exist.

iDOM Testing

The inclinometer boards have been tested for functionality at a fixed angle. One of the 50 boards was used for burn-in and integration testing in the next section.

No. | Serial | Vcc (mV) | Temp | Tilt_X | Tilt_Y 1 8005 3229.10958 25.00 -13.550 -21.500 2 5009 3244.97894 25.00 -13.000 -16.575 3 8009 3246.19966 25.00 -13.350 -15.050 4 5007 3239.79088 25.47 -13.425 -18.175 5 2009 3243.45304 25.00 -13.025 -17.700 6 4004 3241.62196 25.00 -13.150 -16.575 7 1004 3245.58930 25.00 -13.825 -20.975 8 6007 3243.14786 25.00 -12.875 -16.850 9 1008 3231.85620 25.00 -12.550 -15.025 10 6005 3245.89448 24.53 -13.775 -18.750 11 7005 3243.14786 25.00 -13.900 -17.675 12 2003 3241.62196 24.53 -12.800 -17.350 13 7007 3244.06340 24.06 -13.200 -16.350 14 2005 3244.06340 24.53 -12.850 -16.125 15 4008 3237.95980 25.00 -13.350 -17.375 16 3005 3244.97894 25.00 -13.050 -17.375 17 4009 3247.72556 24.06 -13.150 -16.325 18 1007 3241.31678 25.00 -13.275 -18.400 19 7006 3236.73908 24.53 -13.750 -15.875 20 3008 3244.06340 25.00 -12.725 -17.425 21 2006 3232.77174 25.00 -12.950 -17.475 22 4007 3235.82354 25.00 -13.450 -17.375 23 3007 3235.51836 25.00 -13.250 -16.550 24 3002 3248.64110 25.00 -13.450 -14.175 25 5004 3246.19966 25.00 -13.300 -15.875 26 6009 3232.16138 24.53 -13.025 -17.200 27 6004 3236.43390 24.53 -13.025 -16.550 28 1009 3241.31678 24.06 -14.000 -15.275 29 3004 3227.58368 24.06 -13.300 -16.550 30 5008 3239.79088 25.00 -13.175 -14.700 31 3009 3244.97894 25.00 -13.700 -15.200 32 1005 3228.19404 25.00 -13.400 -16.500 33 2008 3235.21318 25.00 -13.325 -17.175 34 1002 3233.99246 24.53 -13.000 -17.675 35 6008 3245.28412 25.00 -13.000 -16.000 36 8006 3243.14786 25.00 -12.625 -15.800 37 6006 3244.06340 25.00 -13.275 -16.375 38 7004 3251.38772 25.00 -13.425 -16.625 39 5003 3229.41476 25.00 -13.400 -15.850 40 2007 3248.33592 25.00 -13.300 -16.225 41 7008 3242.84268 25.00 -13.250 -16.850 42 4005 3240.09606 25.00 -14.025 -17.500 43 5006 3243.75822 25.00 -12.800 -16.975 44 4006 3244.06340 24.06 -13.100 -17.250 45 8008 3243.45304 24.53 -13.375 -18.550 46 2002 3242.23232 25.00 -13.050 -17.725 47 5005 3233.68728 24.53 -12.975 -16.825 48 1003 3239.79088 24.06 -13.250 -17.325 49 2004 3248.64110 25.47 -13.300 -18.025

Burn-in Testing

A number of DOM mainboard burn-in tests were carried out over the full standard temperature profile. Tests included burn-in runs with 1) inclinometer off, 2) inclinometer on, and 3) continual readout of the inclinometer.

1) Burn-in, inclinometer off: Sun Apr 26 13:57:18 PDT 2009 Period length: 49h 17m 34s Boards tested: 1 Temperatures: +65C +65C +65C -10C -10C -15C -15C -20C -20C -25C -25C -30C -30C -35C -35C -40C -40C -45C -45C -50C -50C -50C

BOARD	TAG	BOARD SERIAL	TEST	FAIL
V5.1C	006466	a2820201b241	319	0
STF Results [Apr 25, 200	19 8:59:13 AM 65.0C]			

	passed all ADC.xml	atwd_led_nopmt.xml	baseln_cnipA_cnu.xmi baseln_chipA_ch1.xml	baseln_chipA_ch2.xml	basein_ChipB_cnu.xmi basein_chipB_ch1.xml	baseln_chip8_ch2.xml	clock1x_chip8.xml	disc_scan_025pe.xml	disc_scan_1pe.xml fadr haseline.xml	fadc_fe_pulser_2pe.xml	fadc_fe_pulser_40pe.xml fadc_fe_pulser_8ne_xml	led_maxlight.xml	led_minlight.xml	100pback_ICXMI memory-chip0-long.Xml	memory-chip1-long.xml	ped_chipA_ch0.xml ned_chinA_ch1.xml	ped_chipA_ch2.xml	ped_chip8_ch0.xml	ped_chip8_ch2.xml	pednoise_chipA_ch0.xml nednoise_chinA_ch1.xml	pednoise_chipA_ch2.xml	pednoise_chip8_ch0.xml nednoise_chin8_ch1_xml	pednoise_chipB_ch2.xml	pedsweep_chipA_ch0.xml nedsween_chinA_ch1.xml	pedsweep_chipA_ch2.xml	pedsweep_chip8_ch0.xml	pedsweep_chip8_ch2.xml	pressure.xml	pulser_1pe_chipA_ch0.xml pulser_1pe_chipB_ch0.xml	pulser_40pe_chipA_ch0.xml	pulser_40pe_chipA_ch1.xml nulser 40ne_chinA_ch2 xml	pulser_40pe_chipB_ch0.xml	pulser_40pe_chip8_ch1.xml pulser 40pe_chip8_ch2.xml	pulser_8pe_chipA_ch0.xml	pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch0.xml	pulser_8pe_chip8_ch1.xml	temperature.xml
V5.1C 006466 c0w2dA																																					

2) Burn-in, inclinometer on

Thu Apr 23 13:43:51 PDT 2009 Period length: 49h 59m 24s Boards tested: 1

Temperatures: +65C +65C +65C +65C -10C -10C -15C -15C -20C -20C - 25C -25C -30C -30C -35C -35C -40C -40C -45C -45C -50C -50C - 50C - 50C

BOARD TAG V5.1C 006466 STF Results [Apr 22, 2009 8:45:03 AM 65.0C]	BOARD SERIAL	TEST	FAIL
	a2820201b241	319	O
passed all passed all ADC.xml basein. chipA. ch.xml basein. chipA. ch.xml basein. chipB. ch0.xml basein. chipB. ch0.xml basein. chipB. ch2.xml basein. chipB. ch2.xml	dock1x_chipAxml dock1x_chipAxml disc.scan_1pexml disc.scan_1pexml fac.baselnex.rml fac.te_pulser_2pexml fac.te_pulser_40pexml fac.te_pulser_8pexml fac.te_pulser_8pexml dect_minight.xml led_minight.xml led_minight.xml memory-chip1-long.xml memory-chip1-long.xml met chinA_ch1 xml	pred. chipA_chi2xxxiii pred. chipB_ch0xxmi pred_chipB_ch0xxmi pred_chipB_ch0xxmi predinoise_chipA_ch0xxmi predinoise_chipA_ch1xxmi predinoise_chipB_ch0xxmi predinoise_chipB_ch0xxmi predinoise_chipB_ch1xxmi	pedsweep_chipA_ch0.xml pedsweep_chipA_ch1.xml pedsweep_chip8_ch0.xml pedsweep_chip8_ch0.xml pedsweep_chip8_ch0.xml pedsweep_chip8_ch0.xml pressure.xml pressure.xml pulser_10pe_chipA_ch0.xml pulser_40pe_chipA_ch0.xml pulser_40pe_chipA_ch1.xml pulser_40pe_chip8_ch0.xml pulser_40pe_chip8_ch0.xml pulser_40pe_chip8_ch0.xml pulser_40pe_chip8_ch0.xml pulser_40pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml pulser_8pe_chip8_ch1.xml

3) Burn-in, continual readout of inclinometer

Tue Apr 28 16:58:22 PDT 2009 Period length: 49h 09m 16s Boards tested: 1 Temperatures: +65C +65C +65C +65C -10C -10C -15C -15C -20C -20C -25C -25C -30C -30C -35C -35C -40C -40C -45C -50C -50C -50C -50C BOARD TAG BOARD SERIAL TEST FAIL 006466 a2820201b241 319 V5.1C 0 STF Results [Apr 27, 2009 12:00:23 PM 65.0C]long.xm _pulser_40pe.xm fe_pulser_2pe.xm fe_pulser_8pe.xm _chip8_ch2.x orv-chip1-long c_scan_025pe.xn ch2.xml In_chipB_ch2.x scan_1pe.xml ch0.xm ch1.xm chip8_ch0.xml chip8 ch1.xml ock1X_chip8.xml oaseline.xml naxlightxm ninlightxml lcxm] -chip0assed all ack nise **VDC.Xm** V5.1C 006466 c0w2dA

Integration testing

A completed DOM, including flasher board and PMT sealed in a pressure sphere, was run through an STF test with an inclinometer installed. The test was repeated with the inclinometer both on and off.

Inclinometer performance testing

Using draft FPGA code and scripts to exercise a prototype installed on a DOM main board, we found performance consistent with or better than specification (Fig. 7).

Fig. 7. Results from an ADIS16209 running through a DOM main board over four days. The inclinometer angular resolution exceeds product specification of 0.025°.

Gel creep test

A concern was raised that the performance of the iDOM in tracking ice movement could be compromised, if the gel which couples the PMT and hardware to the pressure sphere is capable of permanent deformation, or creep. Manufactured by Quantum Silicones, the gel is classified as a cross-linked elastomer that is resistant to flow.

When a stress is applied to a viscoelastic material such as a polymer, parts of the long polymer chain may change position, and this movement or rearrangement is called creep. Polymers remain a solid even when parts of the chains are rearranged in order to accompany the stress, and as this occurs, it creates a back stress in the material. When the original stress is taken away, the accumulated back stress will cause the polymer to return to its original form. Upon application of a constant stress, the material deforms at a logarithmically decreasing rate, asymptotically approaching the steady state strain.

Figure 8 shows the experimental setup in which potted DOM was fixed in an exaggerated stress position, tilted by 35° from the horizontal. A projected laser pointer registered tiny increments in the tilt of the PMT and hardware within the hemisphere over a period of several days. Two separate experiments were conducted and details are given below. In summary the gel behaves as expected, i.e., it is capable of elastic strain but does appear to flow substantially. These experiments were carried out at room temperature, and we can safely predict that the gel will be even more resistant to flow when in the ice and 40 to 60 degrees colder.

Trial 1: The position of the PMT within the hemisphere was tracked for several days with a precision of ~0.001 degrees, an order of magnitude higher resolution than the MEMS inclinometer chip (0.025°) . No movement was detectable.

Trial 2: A small weight was suspended from the flasher board to further exaggerate stress on the gel and to simulate a grossly offset center of gravity. The results are shown in Figure 10. After a 2-3 day adjustment to the stress, the gel reached a steady-state strain and did not distort further. The total displacement is below the resolution of the iDOM sensor.

Fig. 9. Trial 2 results with added weight, showing deformation and stabilization phases.

DOM inclinometer (iDOM) Installation

Mating connectors (Samtec SMM-110-02-S-D) have been added to 60 DOM main boards at location JP14. Fifty PCB inclinometer mezzanine cards have been built by Advanced Assembly in Aurora, CO.

Connector JP14 with socket installed and underside of inclinometer circuit board.

1) Apply a \sim 1 cm³ blob of non-corrosive electronics grade RTV to the top of the config memory. This will hold the inclinometer board in place.

2) Plug the inclinometer board fully into the socket. Make certain that the adhesive adheres to both the config chip and the mezzanine card. Try to mount each card consistently and approximately level with the main board.

3) Install jumper from power pin on JP12 (lower pin, with dot) to the power pin on the inclinometer (right hand side, marked 3.3V).

4) (*Optional*) An SPI protocol serial interface module for the FPGA would need to be added to the Mainboard firmware in order to test the inclinometer installation prior to sealing the DOM. A few simple scripts below could then be used to confirm functionality.

Enable SPI interface: #!/bin/bash

echo 'send "\$30000 \$90081060 !\r" expect "^>"' | se 02a

Query supply voltage: #!/bin/bash

yinc=\$(echo 'send "\$0200 \$90081090 ! 50000 usleep \$0000 \$90081090 ! 500 usleep \$90081094 @ \$3fff and . drop\r" expect "^>"' | se 02a | tr '\r' \n' | grep '^[0-9]'); echo "\$yinc * 0.30518" | bc

Query temperature:

#!/bin/bash

yinc=\$(echo 'send "\$0a00 \$90081090 ! 50000 usleep \$0000 \$90081090 ! 500 usleep \$90081094 @ \$3ffc and . drop\r" expect "^>"' | se 02a | tr '\r' \n' | grep '^[0-9]'); echo "(((\$yinc - 1278)/4)* -0.47) + 25" | bc

Query X inclination:

#!/bin/bash

yinc=\$(echo 'send "\$0c00 \$90081090 ! 50000 usleep \$0000 \$90081090 ! 500 usleep \$90081094 @ \$3fff and . drop\r" expect "^>"' | se 02a | tr '\r' '\n' | grep '^[0-9]'); echo "if (\$yinc >= 2^13) (2^14 - 1 - \$yinc) * -0.025 else \$yinc * 0.025" | bc

Query Y inclination:

#!/bin/bash

yinc=\$(echo 'send "\$0e00 \$90081090 ! 50000 usleep \$0000 \$90081090 ! 500 usleep \$90081094 @ \$3fff and . drop\r" expect "^>"' | se 02a | tr '\r' '\n' | grep '^[0-9]'); echo "if (\$yinc >= 2^13) (2^14 - 1 - \$yinc) * -0.025 else \$yinc * 0.025" | bc